SUSY Searches with Photons in CDF

Sung-Won Lee CDF Collaboration/Texas A&M Univ.

Outline

- Physics Motivations; Why Photon in SUSY...
 SUSY and New physics with photon final states
- Measurement of Photons in CDF II
- New Particle Search Strategies at CDF II
- CDF Exotics Searches with Photons in Run II
- Conclusions and Outlook

The Interesting Event on the Tail

Prologue

- On April 28, 1995, CDF recorded a spectacular $ee\gamma\gamma+E_T$ candidate event.
- Total "a posteriori" expected rate is 10⁻⁶, including possibly misidentified particles.
- CDF recently reported an excess of events in $\mu \gamma + \mu_T$ channel that disagree with SM prediction (~2.7 standard deviation for Gaussian distribution)

eeyy₹Candidate Event

What is it?, Statistical fluctuation? or Hints of New Physics?

Lots of discussion between theoretical and experimental communities

→ many theoretical interpretations...

More Interesting Event on the Tail

- CDF has performed a model independent search in Run I for new physics that gives leptons, photons, missing E_{τ} in final state
- Inspired by $ee\gamma\gamma+I_T^{\mu}$ candidate event

The SM prediction yields the observed rate of a lepton+photon (+Missing Et) with 0.7% probability (~2.7 standard deviation for Gaussian distribution)

- Search Selection: $l(e/\mu)\gamma$ events (Et>25 GeV)
- Main backgrounds:
 W/Z+γ, lepton+fake γ

Category	Predicted μ_{SM}	Observed N_0	$P(N > N_0 \mu_{SM})$ %
All l, γ, X	_	77	_
\overline{Z} - like e, γ	_	17	_
Two - Body l, γ, X	24.9 ± 2.4	33	9.3
Multi - Body l, γ, X	20.2 ± 1.7	27	10.0
Multi - Body l, l, γ, X	5.8 ± 0.6	5	61.0
Multi - Body l, γ, γ, X	0.02 ± 0.02	1	1.5
Multi - Body l, γ, MET, λ	7.6 ± 0.7	16	0.7

It's an interesting result, but it's not a compelling observation of new physics!!
Run II analysis is in progress now

Recent theoretical explanation of the $\mu\gamma$ events is...

"Resonant smuon production with a single dominant R-parity violating coupling" (hep-ph/0111014)

Sungwon Lee

SUSY 2003, Arizona

Photon Signatures of New Physics

- We can search for new physics with photons in the final state
- Why photon?

Empirically interesting!!

The primary motivation for searching in photon final states is that the photon is likely to be <u>a good probe of new interactions</u>, particularly <u>SUSY</u>.

High P_T physics with photons and E_T

- SUSY $(N_2 \rightarrow \gamma N_1, Light Gravitinos)$
- Large Extra Dimensions

- Technicolour
- Bosephilic Higgs: W/Z+Higgs \rightarrow W/Z+ $\gamma\gamma$
- Anomalous $W(\rightarrow \ell \nu)/Z(\rightarrow \ell \ell, \nu \nu) + \gamma$ production

SUSY Models

- Minimal SUSY extension of SM (MSSM)
- Minimal Super-Gravity (mSUGRA)
- Gauge Mediated SUSY Breaking (GMSB)

SUSY Photon Signatures at Tevatron

In recent SUSY models, <u>two main choices of SUSY breaking have come</u> <u>into favor that predict photons in the final state.</u> SUSY particles are not degenerate with Standard Model particles → SUSY is broken either...

via Standard Model Gauge Interactions

via Gravity
(Heavy Gravitino)

GMSB

Gravitino mass, \mathbf{M}_{G} , related to SUSY breaking scale, $\sqrt{\mathbf{F}}$

LSP = Gravitino NLSP = Neutralino

$$\widetilde{\chi}^0 \rightarrow \gamma + \widetilde{\mathbf{G}}$$

Relevant mass range:

 $O(10^{-2} < M_G < 10^4) \text{ eV}$

Supergravity

Breaking transmitted to visible particles by gravitino interaction

LSP = 1st lightest Neutralino NLSP = 2nd lightest Neutralino

$$\widetilde{\chi}_2^0 \rightarrow \gamma + \widetilde{\chi}_1^0$$

If $\widetilde{\chi_1}^0$ is mostly higgsino and $\widetilde{\chi}_2^0$ is mostly gaugino

The process will result in $\gamma\gamma + E_T + X$ events if both neutralino decay inside the detector.

CDF II Detector @ Tevatron

CDF II detector is essentially new, commissioned and now taking physics-quality data @ 1.96 TeV since Feb 2002

Highlights of Upgrade

- ✓ New front-end, DAQ and trigger
- ✓ New silicon vertex detector
- ✓ New central outer tracker
- ✓ New end-plug calorimeters
- ✓ Extended muon coverage
- ✓ New time-of-flight system
- EM calorimeter timing (Summer 03)

Major components used in CDF II Photon Physics

- 1. Central EM Calorimeter System
- 2. Central Tracker
- 3. Timing from Hadron Calorimeter

Measurement of Photons in CDF II

Triggers/Dataset

Many Triggers: all are running, including L2 (central/plug photons)

- Inclusive Photon: Et>25, w/ ISO
- Ultra(Super) Photon: Et>50(70)
- Diphoton: Et>12, w/ ISO
- Diphoton: Et>18, w/o ISO
- Triphoton: Et>10, w/o ISO
- Photon: Et>16 + Muon
- Photon: Et>16 + 2 jets (W/Z+γ)
- Photon: Et>10 + SVT track

Large samples are being collected, tested and many studies started:

Backgrounds, calibration, fake rates, simulation...

Standard Photon ID

Central Photon Cuts:

- Adjust transverse quantities to vertex
- Number of 3-D track
- E fraction b/w HAD and EM Cal.
- Calorimeter Isolation
- Track Isolation
- Two topological shower quantities
 - 1. EM Shower width
 - 2. EM Shower cluster energy

Additional Selections:

- reject cosmic-ray
- reject Tevatron Beam-Halo events

Identification of Photon Signals in CDF

<u>Photon candidates</u>: Isolated electromagnetic showers in the calorimeter, with no charged tracks pointing at the calorimeter cluster

Backgrounds

Shower Maximum Detector

e.g. for diphoton candidates, S/B result using CPR method is..

- CDF uses two techniques for determination of photon signals;
 - 1. <u>EM Shower width (shape):</u> using Shower Max. Detector
 - 2. <u>Conversion Probability:</u> using pre-radiator hits
- For every photon, CDF find the fraction of candidates with these informations:

(extracted signals statistically)

	γ-γ	γ-Jet	Jet-jet
CPR	29±23%	40±28%	30±23%

New Particle Search Strategies at CDF II

Two different approaches for new particle search with photons will be actively pursued in CDF Run II experiment in a complementary way:

1. Traditional Model-driven Analyses

- pick a favorite theoretical model & process, choose the best signature(s): optimize selection acceptance based on signal MC
- calculate the expected backgrounds

evaluate the limit or discover a new signal

Best optimization, but model might become some outdated..

2. Signature-based Approach

- pick a specific signature (e.g. diphoton+X)
- define the sample in terms of known processes
- publish estimates of acceptances & cross section information useful for theorists
- <u>see an excess? inconsistency with SM? test one or more models</u> later.

Not best optimization but open to a whole lots of models; An unbiased study is fundamental for data understanding.

Exotics Searches with Photons in CDF Run II

- Search for Anomalous Di-Photon+ Transport Production
- Search for Anomalous Photon+Lepton Production
- Search for GMSB with Di-Photon+ ₱_T
- Search for LED with Photon+ #\mu_T
- Search for Excited Lepton with ee+photon
- Search for W/Z+Photon

YY+X Signature-based Searches

- Run I Search for an excess of events in the $\gamma\gamma+X$ final state,
- will generalize the Cousin Search to a full Signature Based Search

where X is...

Gauge Boson:

W, Z, gluon(→ jet) or extra photon

Quark:

Light quarks, b-quarks, t-quarks (t→Wb)

• Leptons:

Electrons, Muons, Taus, Neutrinos (Missing Et signature) Leptons from $W\rightarrow \ell \nu$,

 $Z\rightarrow\ell\ell$, $Z\rightarrow\nu\nu$

${ m E_T^{\gamma}} > 12~{ m GeV}~{ m Threshold}$					
Signature (Object)	Obs.	Expected			
$E_{\mathrm{T}} > 35 \; \mathrm{GeV}, \Delta\phi_{\nu_{\mathrm{r}}-\mathrm{jet}} > 10^{\circ}$	1	0.5 ± 0.1			
$N_{ m jet} \ge 4, E_{ m T}^{ m jet} > 10 { m ~GeV}, \eta^{ m jet} < 2.0$	2	1.6 ± 0.4			
Central e or μ , $E_{\rm T}^{e \text{ or } \mu} > 25 \text{ GeV}$	3	0.3 ± 0.1			
Central τ , $E_T^{\tau} > 25 \text{ GeV}$	1	0.2 ± 0.1			
b -tag, E $_{ m T}^b > 25~{ m GeV}$	2	1.3 ± 0.7			
Central γ , $E_T^{\gamma_3} > 25 \text{ GeV}$	0	0.1 ± 0.1			
$E_{\pi}^{\gamma} > 25 \text{ GeV Threshold}$					

Object	Obs.	Exp.
$\mathbb{E}_{\mathrm{T}} > 25 \; \mathrm{GeV}, \; \Delta \phi_{\nu_{\mathrm{r}}-\mathrm{jet}} > 10^{\circ}$	2	0.5 ± 0.1
$N_{ m Jet} \ge 3, \; E_{ m T}^{ m Jet} > 10 \; { m GeV}, \; \eta^{ m Jet} < 2.0$	0	1.7 ± 1.5
Central e or μ , $E_T^{e \text{ or } \mu} > 25 \text{ GeV}$	1	0.1 ± 0.1
Central τ , $\mathrm{E_T^{ au}} > 25~\mathrm{GeV}$	0	0.03 ± 0.03
b -tag, E $_{ m T}^b > 25~{ m GeV}$	0	0.1 ± 0.1
Central γ , $E_T^{\gamma_3} > 25 \text{ GeV}$	0	0.01 ± 0.01

Number of observed and expected $\gamma\gamma$ events with additional objects in 85 pb⁻¹

All results are consistent with the Standard Model background expectations with one possible exception, $ee\gamma\gamma + \rlap/E_T$ event

Search for Anomalous $\gamma\gamma$ Events at CDF

- Search Selection: 2 central photons with Et>13(25) Cosmic and beam halo clean-up
- Main backgrounds: fakes from photon-jet and jet-jet
- Results: 1365(95)events for Et>13(25)

For $M_{\gamma\gamma} > 150 \text{ GeV}$ Expected background: 3.3

Observed:

Run I Results (LED Search)

observed: 287(192) CC(CP) events

Expected background: 4.5 ± 0.6

Observed:

95% C.L. Limits on eff. string scale: using a maximum likelihood fit method

Diphoton Mass

NO excess observed @ High invariant mass, good agreement b/w Run II Data and expectation

95 % C.L. M_s > 899 / 815 GeV $K_{LED} = 1.0 \ (\lambda = -1/+1, Hewett)$

$\gamma\gamma$ +Jets, $\gamma\gamma$ +Leptons Search at CDF

• Search for $\gamma\gamma + X$; X = jet(s)

To search for anomalous production of quarks and gluons, look in anomalous N_{iet} production in $\gamma\gamma$ data

• Search for $\gamma\gamma$ + X; X=lepton(s)

<u>Search Selection:</u>
 Diphoton+extra lepton(s) P(e fake γ)

Main backgrounds:

W/Z+ $\gamma\gamma$, fake γ , Z γ ,e(μ) γ +jet

No event is found

= 1%

Good agreement b/w Run II data and expectation..

14

Search GMSB for $\gamma\gamma + E_T$ (I)

 $(p\overline{p} \to \chi\chi \to N_1N_1 + X \to \gamma\gamma GG + X)$

Limit on GMSB Model

- Gravitino: the LSP particle
- NLSP: Neutralino $N_1 \rightarrow \gamma G$
- Experimental Signature: γγ+Met

SUSY would show up as an excess of events with large Missing Energy

- Search Selection:
 - 2 central photons w/ Et>13(25) Cosmic/beam halo clean-up
- <u>Main backgrounds:</u> (see plot)
 QCD diphoton,
 jet mis-ID, W+photon (lost track)
- <u>Results:</u>
 1392(97)events for Et>13(25)

For Missing Et>25GeV

Expected background: 2±2 Observed: 2

→ Set cross section limit, now

Search GMSB for $\gamma\gamma + E_{\pi}(II)$

Set the lower mass limit on the lightest chargino in GMSB:

M_c>113 GeV @ 95% C.L.

Search for New Physics in $\gamma + p_T$

Search Selection: (84 pb⁻¹)

- one γ with $E_{\tau} > 47$ GeV and $1 \eta < 1$
- Missing E_T > 42 GeV
- No jets with E_T > 10 GeV
- No tracks with $p_T > 5$ GeV

Main backgrounds:

Cosmic ray muons	3.9 ± 1.0
$Z\gamma \rightarrow vv+\gamma$	4.8 ± 0.5
$W \rightarrow e \bar{v}$	7.3 ± 1.7
QCD diphotons	1.1 ± 0.4
W γ (νγ)	0.9 ± 0.3

Results: No excess was found

Expected background: 18.0 ± 2.1

Observed: 17

95% C.L. upper limit on

(accep. x eff. x cross-section) of

121 fb was set: (2.1 x expected

Zγ signal)

Sungwon Lee

Extra Dimensions

Randall-Sundrum

Limit on New Physics

Search for Excited Electrons

- Search for the production of excited or exotic electrons (e*) in the following reaction: $p + \overline{p} \rightarrow e^* + e \rightarrow e\gamma + e$
- This is a signature-based search for an ee_{γ} final state with a resonance in the e_{γ} channel; select two high p_{τ} electrons + one photon (Et>25 GeV)
- 0 event observed, set the <u>first mass limit on the e*</u> for contact interaction model. For $M_{e^*} = \Lambda$, the mass limit is 785 GeV

Wγ Production with W→e(μ)ν at CDF

Physics: <u>look for evidence of anomalous coupling (New Physics)</u>

• Signature: one high p_T lepton(e/ μ) + γ with MET(>25), (Δ R(γ -I)>0.7)

• Results: No excess was found

Data: 43(38)

Signal MC+Background : $46.6 \pm 1.3 \pm 4.5$

 $(36.5 \pm 0.7 \pm 3.0)$

... derived the cross section for

Et(γ)>7, Δ R>0.7

Results consistent with SM

SM: $\sigma \cdot B(W\gamma \rightarrow l\nu\gamma) = 18.7 \pm 1.3 \text{ pb}$

	Data	BGD	$\sigma \bullet B(W\gamma \rightarrow lv\gamma)$ (pb)
е	43	33%	17.2±3.8 _{stat} ±2.8 _{sys} ±1.0 _{lum}
μ	38	29%	19.8±4.5 _{stat} ±2.4 _{sys} ±1.2 _{lum}

SUSY 2003, Arizona

$Z\gamma$ Production with $Z\rightarrow ee(\mu\mu)$ at CDF

- Physics: <u>look for evidence of</u> <u>anomalous coupling (New Physics)</u>
- Signature: two high p_T lepton(e/ μ) + γ ($\Delta R(\gamma-1)>0.7$)
- Results: No excess was found

Data: 11(14)

Signal MC+BGD : $10.8 \pm 0.9 \pm 0.6$

 $(12.4 \pm 1.2 \pm 0.7)$

X-section for Et(γ)>7, Δ R>0.7

Results consistent with SM

SM: $\sigma \cdot B(Z\gamma \rightarrow II\gamma) = 5.4 \pm 0.4 \text{ pb}$

	Data	BGD	$\sigma \bullet B(Z\gamma \rightarrow II\gamma)$ (pb)	
е	-11	4.6%	5.5±1.7 _{stat} ±0.6 _{sys} ±0.3 _{lum}	
μ	14	4.0%	6.0±1.6 _{stat} ±0.7 _{sys} ±0.4 _{lum}	

W_γ/Z_γ data are in good agreement w/ SM

Conclusions

- Since photon is a clean and well measured EM object, new physics searches with photons are particularly interesting.
- □ CDF II is taking data actively since 2001 and larger samples are being collected/tested for new physics searches based on photon signature.
- It is producing its first results on new particle searches with photons. Two different approaches for new physics searches are in progress in CDF.
 - Signature based searches
 - Model based searches
- ☐ High luminosity photon data will provide...
 - the best opportunity for new physics discoveries, and will give any useful informations to theorists. (→ Signature-based searches)
 - experimental guidance to a better theoretical modeling of new physics production with photon in the final states (→ Model-based searches)

Backup Slides

Run I - Lepton+Photon Searches

- CDF has performed a model independent search in Run I for new physics that gives leptons, photons, missing E_{τ} in final state
- Inspired by $ee\gamma\gamma+I\!\!\!\!/T_T$ candidate event

The SM prediction yields the observed rate of a lepton+photon (+Missing Et) with 0.7% probability (~2.7 standard deviation for Gaussian distribution)

- Search Selection: $l(e/\mu)\gamma$ events (Et>25 GeV)
- Main backgrounds:
 W/Z+γ, lepton+fake γ

Category	Predicted $\mu_{\rm SM}$	Observed N_0	$P(N > N_0 \mu_{SM})$ %
All l, γ, X	_	77	_
Z - like e, γ	_	17	_
Two - Body l, γ, X	24.9 ± 2.4	33	9.3
Multi - Body l, γ, X	20.2 ± 1.7	27	10.0
Multi - Body l, l, γ, X	5.8 ± 0.6	5	61.0
Multi - Body l, γ, γ, X	0.02 ± 0.02	1	1.5
Multi - Body l, γ, MET, λ	7.6 ± 0.7	16	0.7

It's an interesting result, but it's not a compelling observation of new physics!!
Run II analysis is in progress now

Recent theoretical explanation of the $\mu\gamma$ events is...

"Resonant smuon production with a single dominant R-parity violating coupling" (hep-ph/0111014)

CDF I Photon-based New Physics Searches

- Search for Diphoton and E_T
 - \rightarrow Gauge-Mediated SUSY Breaking $(\chi \chi in \gamma \gamma + E_T + X)$
- Search for Narrow Diphoton Resonances
 - **→** Bosephilic Higgs Search
 - → Sgoldstino Search
- Search for Photon and B-jet
 - \rightarrow MSSM $(\chi_2^0 \rightarrow \gamma \chi_1^0 \text{ via } \tilde{g}, \tilde{q})$
 - \rightarrow Technicolor ($\omega_T \rightarrow \gamma \pi_T \rightarrow \gamma bb \rightarrow \gamma + 2 b$ -jets)
- Search for Photon and Lepton

$$\rightarrow e \gamma + \rlap{/}E_T$$
, $\mu \gamma + \rlap{/}E_T$, $e/\mu \gamma + \rlap{/}E_T$

- Search for LED with Diphotons
 - → S-channel production of KK tower of Gravitions
- Search for Photon and E_T

Run II has started, searches are in progress

